翻訳と辞書
Words near each other
・ Multul
・ Multyfarnham
・ Multyfarnham (civil parish)
・ Multyfarnham (disambiguation)
・ Multyfarnham (townland)
・ Multyfarnham Friary
・ Multyfarnham or Fearbranagh
・ Mulu
・ Mulu (band)
・ Mulu (company)
・ Mulu Airport
・ Multistriatin
・ MultiSwap
・ Multiswitch
・ Multisyllabic rhymes
Multisymplectic integrator
・ Multisync (software)
・ Multisync monitor
・ Multisynthetase complex auxiliary component p38
・ Multisystem developmental disorder
・ Multisystem proteinopathy
・ Multisystemic therapy
・ MultiTail
・ Multitap
・ Multitape Turing machine
・ Multitaper
・ Multitarget stool DNA screening test
・ Multitasker
・ Multitasking (disambiguation)
・ Multiteam system


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Multisymplectic integrator : ウィキペディア英語版
Multisymplectic integrator
In mathematics, a multisymplectic integrator is a numerical method for the solution of a certain class of partial differential equations, that are said to be multisymplectic. Multisymplectic integrators are geometric integrators, meaning that they preserve the geometry of the problems; in particular, the numerical method preserves energy and momentum in some sense, similar to the partial differential equation itself. Examples of multisymplectic integrators include the Euler box scheme and the Preissman box scheme.
== Multisymplectic equations ==

A partial differential equation (PDE) is said to be a multisymplectic equation if it can be written in the form
: Kz_t + Lz_x = \nabla S(z),
where z(t,x) is the unknown, K and L are (constant) skew-symmetric matrices and \nabla S denotes the gradient of S .〔, p. 1374; , p. 335–336.〕 This is a natural generalization of Jz_t = \nabla H(z) , the form of a Hamiltonian ODE.〔, p. 186.〕
Examples of multisymplectic PDEs include the nonlinear Klein–Gordon equation u_ - u_ = V'(u) , or more generally the nonlinear wave equation u_ = \partial_x \sigma'(u_x) - f'(u) ,〔, p. 335.〕 and the KdV equation u_t + uu_x + u_ = 0 .〔, p. 339–340.〕
Define the 2-forms \omega and \kappa by
: \omega(u,v) = \langle Ku, v \rangle \quad\text\quad \kappa(u,v) = \langle Lu, v \rangle
where \langle \,\cdot\, , \,\cdot\, \rangle denotes the dot product. The differential equation preserves symplecticity in the sense that
: \partial_t \omega + \partial_x \kappa = 0. 〔, p. 186; , p. 336.〕
Taking the dot product of the PDE with u_t yields the local conservation law for energy:
: \partial_t E(u) + \partial_x F(u) = 0 \quad\text\quad E(u) = S(u) - \tfrac12 \kappa(u_x,u) ,\, F(u) = \tfrac12 \kappa(u_t,u). 〔, p. 187; , p. 337–338.〕
The local conservation law for momentum is derived similarly:
: \partial_t I(u) + \partial_x G(u) = 0 \quad\text\quad I(u) = \tfrac12 \omega(u_x,u) ,\, G(u) = S(u) - \tfrac12 \omega(u_t,u).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Multisymplectic integrator」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.